Machine Learning and Pattern Recognition II
2011-2012
-
IMT4632
- 5 ECTS
Prerequisite(s)
IMT4612 Machine Learning and Pattern Recognition II
Expected learning outcomes
Knowledge
- The candidate possesses advanced knowledge in pattern recognition systems (symbolic and statistical learning, artificial neural networks, support vector machines, clustering, fuzzy techniques in artificial intelligence, as well as evolutionary computation and hybrid intelligent methods in artificial intelligence).
- The candidate possesses thorough knowledge about theory and scientific methods relevant for machine learning and pattern recognition.
- The candidate is capable of applying his/her knowledge in new fields of machine learning and pattern recognition.
Skills
- The candidate is capable of analyzing existing theories, methods and interpretations in the field of machine learning and pattern recognition and working independently on solving theoretical and practical problems.
- The candidate can use relevant scientific methods in independent research and development in machine learning and pattern recognition.
- The candidate is capable of performing critical analysis of various literature sources and applying them in structuring and formulating scientific reasoning in the field of machine learning and pattern recognition.
- The candidate is capable of carrying out an independent limited research or development project in machine learning and pattern recognition under supervision, following the applicable ethical rules.
General competence
- The candidate is capable of analyzing relevant professional and research ethical problems in machine learning and pattern recognition.
- The candidate is capable of applying his/her machine learning and pattern recognition knowledge and skills in new fields, in order to accomplish advanced tasks and projects.
- The candidate can work independently and is familiar with terminology in the field of machine learning and pattern recognition.
- The candidate is capable of discussing professional problems, analyses and conclusions in the field of machine learning and pattern recognition, both with specialists and with general audience.
- The candidate is capable of contributing to innovation and innovation processes.
Topic(s)
1. Symbolic Learning
2. Statistical Learning
3. Artificial Neural Networks
4. Support Vector Machines
5. Cluster Analysis
6. Fuzzy Logic
7. Evolutionary Computation
8. Hybrid Intelligent Methods
Teaching Methods
Lectures
Group works
Laboratory work
Exercises
Other
Teaching Methods (additional text)
Annet - homework
Form(s) of Assessment
Written exam, 3 hours
Other
Form(s) of Assessment (additional text)
* Written exam, 3 hours (60%)
* Homework evaluation (4x10%)
All parts must be passed.
Grading Scale
Alphabetical Scale, A(best) – F (fail)
External/internal examiner
Internal examiner
Re-sit examination
For the written exam: Ordinary re-sit examnination.
Examination support
Approved calculator
Coursework Requirements
None.
Teaching Materials
Basic Textbook: Machine Learning and Data Mining: Introduction to Principles
and Algorithms (Paperback) by Igor Kononenko (Author), Matjaz Kukar (Author)
+ selected research papers
Additional Literature for interested readers:
Pattern Recognition and Machine Learning (Information Science and
Statistics) by Christopher M. Bishop
Pattern Classification (2nd Edition) by Richard O. Duda, Peter E. Hart, and
David G. Stork
Machine Learning by Tom M. Mitchell
Additional information
In case there will be less than 5 students that will apply for the course, it will be at the discretion of Course responsibility whether the course will be offered or not an if yes, in which form.