Image processing and analysis
2009-2010
-
IMT4811
- 5 ECTS
Expected learning outcomes
This course develops an understanding of the fundamental characteristics of digital systems used in imaging, together with general concepts of science, quantitative methods. This course covers basic algorithms for image manipulation, characterization, filtering, segmentation, feature extraction and template matching in direct space and Fourier space. The course provides the opportunity for students to explore a range of practical techniques, by eveloping their own simple processing functions either in language such as C++ and/or by using library facilities and tools such as Matlab.
On completion of this course the student will be able to:
- Understand (i.e. to describe, analyse and reason about) how monochrome digital images are represented, manipulated, encoded and processed, with emphasis on algorithm design, implementation and performance evaluation. methods of capturing and reproducing images in digital systems.
- Understand (i.e. to describe, analyse and reason about) how color digital images are represented, manipulated, encoded and processed.
- Make appropriate use of mathematical techniques in colour imaging. Demonstrate the use of tools such as spreadsheets and specialist maths applications to solve problems in colour imaging
Topic(s)
- Digital image acquisition: analogue to digital conversion. Sampling and quantization. Lookup table conversions. Scaling.
- Digital image formats: representation and description. Image encoding and image compression.
- Image filtering: linear and non-linear filtering operations. Image convolution. Separable convolutions. Image enhancement. Image restoration.
- Digital image processing: histogram manipulation. Thresholding. Image segmentation. Clustering techniques. Split and merge algorithms. Region processing. Edges detecions. Region adjacency graph.
- Image transformations: histogram equalization, geometric transformations, affine transformations, polynomial warps.
- Digital image analysis: noise analysis. Texture analysis. Fourier descriptors. Features extraction. Pattern recognition. Corner detection. Saliency maps. Image interpretation. Motion analysis.
- Color image analysis : representation, encoding, scalar and vector approaches. Clustering techniques. Color invariants. Color constancy algorithms.
- Template matching: Similarity and dissimilarity matchning metrics. Cross-correlation. Multiresoultion algorithms. Graph matching. Image retrieval. 2D object detection, recognition and location.
- High level image descriptors. Semantic image description MPEG7.
Teaching Methods
Lectures
Laboratory work
Net Support Learning
Teaching Methods (additional text)
Lectures by the course teacher and guest lecturers.
Lab sessions and home works.
E-learning material: lectures notes in PDF and audio recording of the lectures and important exercises.
Form(s) of Assessment
Written exam, 3 hours
Exercises
Form(s) of Assessment (additional text)
Written exam (50%), exercises (50%)
Grading Scale
Alphabetical Scale, A(best) – F (fail)
External/internal examiner
One internal and one external examiner
Re-sit examination
Written exam: ordinary re-sit examination
Examination support
English dictionary only.
Teaching Materials
- Digital Image Processing, 3rd Edition (DIP/3e), by Rafael C. Gonzalez and Richard E. Woods, Prentice Hall (2008)
- Digital Image Processing Using MATLAB (DIPUM), by Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, Prentice Hall (2004).
- Color Image Processing: Methods and Applications (Image Processing), by Rastislav Lukac & Kostantinos N. Plataniotis, CRC (2006)
- The Image Processing Handbook, Fifth Edition (Image Processing Handbook), by John C. Russ, CRC (2006)
Replacement course for
Partial overlap with IMT4401 Digital Image Reproduction